Skip to main content

RTX 3060 CUDA Setup on Ubuntu 22.04 (CUDA 11.6)

·468 words·3 mins
Linux Nvidia Ubuntu 22.04 CUDA CuDNN
Table of Contents

Setting up a reliable deep learning environment requires tight alignment between GPU hardware, kernel modules, and NVIDIA’s software stack. This guide documents a known-stable configuration for RTX 3060 (LHR) on Ubuntu 22.04 LTS using CUDA 11.6 and cuDNN 8.8.

🧩 System Baseline & Prerequisites
#

Confirm the GPU model and ensure the system sees the device correctly.

lspci -vnn | grep VGA
# Expected: NVIDIA Corporation GA106 [GeForce RTX 3060 Lite Hash Rate]

This guide assumes:

  • Ubuntu 22.04 LTS (standard kernel)
  • Clean system or previously purged NVIDIA drivers
  • Secure Boot disabled (recommended for simplicity)

🚫 Disable the Nouveau Driver
#

The open-source nouveau driver conflicts with NVIDIA’s proprietary driver and does not support CUDA.

Create a blacklist file:

sudo vim /etc/modprobe.d/blacklist-nouveau.conf

Add the following:

blacklist nouveau
options nouveau modeset=0

Update initramfs and reboot:

sudo update-initramfs -u
sudo reboot

Verify Nouveau is disabled after reboot:

lsmod | grep nouveau
# No output means success

🧠 Install NVIDIA Driver (510 Series)
#

CUDA 11.6 pairs best with the NVIDIA 510 driver series, offering long-term stability.

Check the recommended driver:

ubuntu-drivers devices

Install the driver:

sudo apt install nvidia-driver-510 -y
sudo reboot

Verify installation:

nvidia-smi

You should see:

  • GPU: RTX 3060
  • Driver Version: 510.xx
  • CUDA Version: 11.6

⚙️ Install CUDA Toolkit 11.6
#

The CUDA Toolkit provides nvcc, runtime libraries, and developer tools.

Download the local runfile from NVIDIA’s CUDA archive to avoid apt conflicts.

Run the installer:

sudo ./cuda_11.6.0_510.39.01_linux.run

During installation:

  • Uncheck NVIDIA Driver (already installed)
  • Install Toolkit only

Environment Variables
#

Append to ~/.bashrc:

export PATH=/usr/local/cuda-11.6/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.6/lib64:$LD_LIBRARY_PATH

Apply changes:

source ~/.bashrc
nvcc --version

🧠 Install cuDNN 8.8
#

cuDNN accelerates deep learning primitives for frameworks like PyTorch and TensorFlow.

Install via NVIDIA’s local repository package for Ubuntu 22.04:

sudo dpkg -i cudnn-local-repo-ubuntu2204-8.8.1.3_1.0-1_amd64.deb
sudo cp /var/cudnn-local-repo-*/cudnn-local-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get install libcudnn8 libcudnn8-dev libcudnn8-samples

Verify headers and libraries:

ls /usr/include/cudnn*.h
ls /usr/lib/x86_64-linux-gnu/libcudnn*

🚀 Validation & Performance Test
#

Use a minimal Numba CUDA kernel to confirm GPU execution.

import numpy as np
from numba import cuda

@cuda.jit
def increment_kernel(arr):
    idx = cuda.grid(1)
    if idx < arr.size:
        arr[idx] += 1

data = np.zeros(10_000_000, dtype=np.int32)
d_data = cuda.to_device(data)

increment_kernel[256, 256](d_data)
cuda.synchronize()

While running, check GPU activity:

nvidia-smi

You should see Python consuming GPU memory and compute.

🛠️ Troubleshooting FAQ
#

Issue Resolution
Broken packages after install Purge old drivers: sudo apt remove --purge nvidia*
nvidia-driver-530-open installed Avoid open drivers; use nvidia-driver-510
DKMS build failure Ensure matching kernel headers are installed
nvvp display error Requires local desktop or ssh -X
CUDA not found Recheck PATH and LD_LIBRARY_PATH

🧩 Final Notes
#

This RTX 3060 + CUDA 11.6 + cuDNN 8.8 stack is a conservative, production-proven configuration. While newer CUDA releases exist, this pairing prioritizes driver stability, framework compatibility, and reproducibility, making it well-suited for long-running training workloads on Ubuntu 22.04.

Related

NVIDIA Rubin GPU to Replace Boot0 with New Boot42 System
·618 words·3 mins
Nvidia Rubin GPU Boot42 Blackwell Linux Rust
8 Effective Vulnerability Scanning Tools for Linux Security
·590 words·3 mins
Linux Security Vulnerability Scanning Cybersecurity
AMD and NVIDIA Plan GPU Price Hikes Starting 2026
·541 words·3 mins
GPUs AMD Nvidia Semiconductors PC Hardware